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Abstract: Load side management is the basic and significant principle to keeping the balance between gen-
eration side and consumption side of electrical power energy. Load side management on typical medium
voltage feeder is the power energy consumption control of connected loads with variation of essential pa-
rameters that loads do reaction to their variation. Knowing amount of load's reaction to each parameters
variation in typical medium voltage feeder during the day, leads to gain Load Manageability Factor (LMF)
for that specific feeder that helps power utilities to manage their connected loads. Calculating this LMF
needs to find out each types of load with unique inherent features behavior to each parameters variation.
This paper results and future work results will help us to catch mentioned LMF. In this paper analysis of
residential load behavior due to temperature variation with training artificial neural network will be done.
Load behavior due to other essential parameters variations like energy pricing variation, major event hap-
pening, and power utility announcing to the customers, and etc will study in future works. Collecting all re-
lated works results in a unit mathematical equation or an artificial neural network will gain LMF.
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1. Introduction

Load connected to the medium voltage feeder have
some reactions to the parameters variation like environ-
mental conditions variation, energy pricing variation,
major event happening, and power utility announcing to
the own customers. Due to some items in the customers,
reactions to the parameter changes can be different. These
items are customer welfare level, customer knowledge
level, and type of load that we considered. If there is a
method to find out the amount of reaction level of each
feeders energy consumption to each parameter variation
during the day then we could find which parameter that
must managed and more amount of assets should be as-
signed to aforementioned parameter's control and manag-
ing.

In figure 1 two load profiles curve for typical medium
voltage feeder are shown. Pa(t) is the specific day load
profile curve equation and Pm(t) is the managed load pro-
file curve equation for mentioned feeder that is obtained
after applying principle parameters effectiveness. Some
principle parameters caused load profile curve changes
from Pa(t) to Pm(t). These parameters effectiveness are
shown in LMF as shown in 1.

Tranian Journal of Electrical & Electronic Engineering, 2016.
Paper received 4 November 2016 and accepted 3 March 2017.
* The Authors are with Zanjan University, Zanjan, Iran.
E-mail: n_eskandari@znu.ac.ir, jalilzadeh@znu.ac.ir
Corresponding Author: N. Eskandari

Pa

Pm

3

Fig. 1. Two load profile curve for typical medium voltage
feeder.
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Load Manageability Factor (LMF) =

There is a lot of parameters that their changes maybe
affect to power energy consumption and causes load re-
action which some of them that are very important consist
environmental condition such as temperature and humid-
ity variation, energy price variation at a specific period of
time, major events like sport game broadcast and presi-
dent lecture on TV, and power utility announcing to the
own customers. These parameters respectively are shown
with x1 to x5 variables in 2.
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x1 — temperature

X2 = humidity

x3 — power energy price 2)
x4 - major events happening

x5 = announcing to the customers

Each customer's degree of reaction to the mentioned
parameters depends on inherent feature of them like cus-
tomer's welfare, customer's knowledge, and type of loads
such as residential, commercial, and industrial loads. If
specific load with a unique own inherent feature reactions
to the condition with same amount for parameters x2 to
x5 in definite period of time are shown with 3 and so on
for conditions that parameters x1 and x3 to x5 are the
same are shown with 4 and continue this situation for each
parameters, thus there are 5 equations that each of them
illustrates load profile with only one parameter variation
effectiveness. So with combination of these 5 equations,
the main equation is gained. In this main equation that
shows load profile, with changing one of essential param-
eters, the amount of load profile variation could be seen
and calculated. So with changing one of these parameters,
the amount of manageability of load could be calculated.

x1 = could be vary
x2 to x5 = without variation (3)
P1(t) = load profile equation with above conditions

x2 = could be vary
x1 and x3 to x5 — without variation @)
P2(t) = load profile equation with above conditions

x3 = could be vary
x1,x2, x4, x5 - without variation 5
P3(t) = load profile equation with above conditions ®)

x4 = could be vary
x1,x2,x3, x5 = without variation
P4(t) = load profile equation with above conditions (6)

x5 = could be vary
x1 to x4 — without variation 7)
P4(t) = load profile equation with above conditions

In this paper with use of assumption 2, manageability
factor for a unique typical residential medium voltage
feeder are calculated during the day. Manageability factor
value for each time of the day shows that specific feeder
energy consumption changes with considering tempera-
ture changes on that time. Calculating manageability fac-

tor with use of assumptions 3 till 6 give us a proper strat-
egy to lead assets for controlling and managing load side
energy consumption with concentrate on which parame-
ters that needs less attempting or budgets and more effec-
tiveness in comparison with others. Calculating process
for assumption 4 to 7 is very similar to work that we did
in this.

The main equation is the combination of those five
equations that each of them present load profile with one
variable changing effectiveness by considering that an-
other parameters with same conditions for whole period
of time that studying performed. With having this main
equation, power utility companies could manage load side
energy consumption more effectively. This main equation
has Load Manageability Factor (LMF) inherently that was
showed in 1. Calculating should be done for every kind
of loads with unique innate features. In this paper the cal-
culation are done for residential load with average welfare
and knowledge level.

2. Previous Related Works

Many researches discuss some approaches to manage
load side energy absorption that we are going to summa-
rize them in the following context.

Reference [1] proposes a scheduling strategy based on
real-time pricing in smart grids. Also a hierarchical game
is employed to analyze the decision-making process of
generators and consumers. It proves the existence and
uniqueness of Nash equilibrium and utilize a backward
induction method to obtain the generation and consump-
tion strategies. Then, two dynamic algorithms for the gen-
erators and consumers to search for the equilibrium in a
distributed fashion are proposed. Simulation results in the
article demonstrate that the proposed scheduling strategy
can match supply with demand and shift load away from
peak time.

In [2] Demand-response (DR) is regarded as a promis-
ing solution for future power grids. They used a Stackel-
berg game approach, and describe a novel DR model for
electricity trading between one utility company and mul-
tiple users, which is aimed at balancing supply and de-
mand, as well as smoothing the aggregated load in the
system. In [2] an iterative algorithm is proposed to derive
the Stackelberg equilibrium, through which optimal
power generation and power demands are determined for
the utility company and users respectively. Numerical re-
sults indicate that the proposed method can efficiently re-
shape users’ demands, including flattening peak demands
and filling the vacancy of valley demands, and signifi-
cantly reduce the mismatch between supply and demand.

In [3] residential demand response is studied through
the scheduling of typical home appliances in order to min-
imize electricity cost and earn the relevant incentive. A
mixed integer nonlinear optimization model is built under
a time-of-use electricity tariff. A case study shows that a
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household is able to shift consumption in response to the
varying prices and incentives, through which the con-
sumer may realize an electricity cost saving of more than
25%. It has also been shown that at different values of the
weighting factor , gives varying costs, from which the
consumer is able to choose according to their preferences.
Therefore a final decision about participation in the pro-
gram could be made.

In [4] they derive an optimization problem that mini-
mizes procurement costs of an electricity retailer in order
to control Demand Response usage. The evaluation with
historic data shows that cost volatility can be reduced by
7.74%; peak costs drop by 14.35%; and expenditures of
retailers can be significantly decreased by 3.52%.

In [5] investigations on DSM programs which are done
in different countries, enlarge the view of managers for
program designing. This paper reviews DSM programs of
13 countries and at the end there are some suggestions for
the case of Iran. In this article peak reduction and load
shifting could be apply for DSM programs in Iran. Also
unreal electricity price is known as a major problem in
Iran.

In [6] the authors examine the influence of M/SV for a
specific case of the conceptual design of a demand re-
sponse (DR) program. DR is a proposed Smart Grid ca-
pability that can be implemented by a utility into an
electricity distribution grid. M/SV considered include
simulation time-step, number of electricity consumers,
and seed variables used in modeling stochastic behavior.
The influence of these variables on the ability of the DR
simulation environment to produce accurate load curves
and peaks is analyzed. For some M/SV, is shown that in-
creased fidelity offers diminishing returns on greater com-
putation time. Quantification of the influence of M/SV is
used to support discussion and to identify important con-
siderations when modeling large scale DR past the con-
ceptual design stage.

In [7] one type of algorithm is extended to cover sce-
narios where the supply is no longer fixed; its perform-
ance is investigated under varying conditions such as the
percentage of the flexible load as well as the extent of the
load’s flexibility. The expected benefit of applying the al-
gorithm to real world scenarios is predicted, allowing for
an informed decision on whether or not to employ it in
specific situations and under which pricing conditions.

[8] Presents a Building Automation System where the
Demand-Side Management is fully integrated with the
building’s Energy Production System, which incorporates
a complete set of renewable energy production and stor-
age systems. The presented strategy is developed for the
new Experimental Park of Renewable Energies (PETER)
located in the University of Evora, Portugal. These facil-
ities are located within Herdade da Mitra, the University
agro-livestock complex, which comprises several houses,
teaching facilities, animal hospital, wineries, byre, pigsty,

and other agriculture facilities.

[9] Describes the current status of DSM efforts in the
U.S. and explores how these programs affect electricity
operations. The relationship between DSM policy and
program efforts and the amount of saved electricity is
tested, with a methodological approach aimed at minimiz-
ing selection bias that is inherent in the non-experimental
research design. Results confirm that state-run DSM ef-
forts contribute to electricity savings across the country.
Public benefit funds coupled with performance incentives
are found to encourage utility participation in DSM pro-
grams. Energy efficiency portfolio standards and perform-
ance incentives effectively promote electricity savings;
but public benefit funds without the support of other DSM
policies are not significant drivers of either DSM program
participation or total DSM electricity savings.

[10] proposes the use of an stochastic evolutionary
based optimization technique, Evolutionary Algorithms,
to automatically generate optimal, or nearly optimal, so-
lutions that represent schedules to charge a number of
electric vehicles (EVs) with two goals: (a) that each EV
is as fully charged as possible at time of departure, and
(b) to avoid charging them at the same time, whenever
possible (e.g., load reduction at the transformer level). In-
stead of using a price signal to shift load consumption, we
achieve this by considering what all the EVs might do at
a particular time, rather than considering an interaction
between an utility company and its user, as normally
adopted in DSM programs. The main contribution of this
work is the notion of load shifting, borrowed from smart
pricing methods, implemented in an evolutionary-based
algorithm to automatically generate optimal solutions.
The results obtained by their proposed approach are
highly encouraging in both: EVs being almost fully
charged at time of the departure and the transformer load
being reduced as a result of avoiding turning on the EVs
at the same time.

In [11] first argued that the chosen test statistics bias
results in favor of rejecting the null hypothesis that util-
ity-reported savings reflect true values. They also note
that utility estimates of average program savings and costs
are rejected based on point estimates alone. They use the
same data and econometric model to estimate the appro-
priate test statistics. Then they construct nonparametric
bootstrap confidence intervals. These intervals are quite
large. They fail to reject the average electricity savings
and DSM costs reported by utilities. Their results suggest
that the evidence for rejecting utility estimates of DSM
savings and costs should be re-interpreted.

In [12] they focus on a smart grid in which the demand-
side comprises traditional users as well as users owning
some kind of distributed energy sources and/or energy
storage devices. By means of a day-ahead optimization
process regulated by an independent central unit, the latter
users intend to reduce their monetary energy expense by
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producing or storing energy rather than just purchasing
their energy needs from the grid. In this paper, they for-
mulate the resulting grid optimization problem as a non-
cooperative game and analyze the existence of optimal
strategies. Furthermore, they present a distributed algo-
rithm to be run on the users’ smart meters, which provides
the optimal production and/or storage strategies, while
preserving the privacy of the users and minimizing the re-
quired signaling with the central unit. Finally, the pro-
posed day-ahead optimization is tested in a realistic
situation.

[13] Gives an overview and taxonomy for DSM, ana-
lyzes the various types of DSM, and gives an outlook on
the latest demonstration projects in this domain.

In [14] they consider an abstract market model for de-
mand response where a supply function bidding is applied
to match power supply deficit or surplus. They character-
ize the resulting equilibria in competitive and oligopolistic
markets and propose distributed demand response algo-
rithms to achieve the equilibria. Also they further show
that the equilibrium in competitive market maximizes so-
cial welfare, and the equilibrium in oligopolistic market
has bounded efficiency loss under certain mild assump-
tions. Finally they propose distributed demand response
algorithms to achieve the equilibria.

[15] proposes a reward based demand response algo-
rithm for residential customers to shave network peaks.
Customer survey information is used to calculate various
criteria indices reflecting their priority and flexibility. Cri-
teria indices and sensitivity based house ranking is used
for appropriate load selection in the feeder for demand re-
sponse. Customer Rewards (CR) are paid based on load
shift and voltage improvement due to load adjustment.
The proposed algorithm can be deployed in residential
distribution networks using a two-level hierarchical con-
trol scheme. Realistic residential load model consisting of
non-controllable and controllable appliances is considered
in this study. The effectiveness of the proposed demand
response scheme on the annual load growth of the feeder
is also investigated. Simulation results show that reduced
peak demand, improved network voltage performance,
and customer satisfaction can be achieved.

In all of previous essays researchers argue demand side
management that is affected from one or two parameters
variation. If load behavior due to large number of param-
eters variation are available then it is possible to control
load side consumption in an effectively method. Studying
load behavior at single parameter variation and then
merge those in a load manageability factor could help us
to achieve load side effective consumption management.
In the following section we get load behavior due to single
parameters variation. At first our approach to get the load
manageability factor will be discussed, and then by using
real data about electric load energy consumption, the
unique factor will be achieved.

3. Load Manageability Factor Analyses

Suppose that there is medium voltage feeder that more
than 90% of connected loads have residential aspects and
configuration of this feeder for a long period of time does-
n't have basic changes. There are 24-hour load profiles for
this feeder through aforementioned long period of time
and also there are basic information about that feeder and
respective days. Basic information about the feeder could
be knowledge level of costumers, and social welfare that
are the same through studying period of time. Basic in-
formation about the respective days could be environment
temperature, environment humidity, and some important
events that have happened on typical days with large ef-
fective on energy consumption like principal football
matches playing, political debates, and popular TV pro-
grams.

In order to catch the single effective parameter load
profile we need the load profile of days that differences
between them are because of the single parameter
changes. In this paper single parameter is temperature
variation. So we consider and select load profile of days
that have same effective factors except environment tem-
perature differences. Equation (8) shows load profile
curve equations for all days that have same conditions ex-
cept different temperature. m is the number of days that
have same conditions during studying period of time ex-
cept temperature variation.

P()=at" +a,t"™ ++a,t
P,(t)= Bt" + P,t"" +- + Bt
Po(t)=pyt" + " eyt (8)

P.()=wt"+w,t"" + - +w,t

n

For all days of 1 to m effective factors that causes load
consumption variation is environmental temperature
changes. All equations for these days are obtained from
curve fitting process in Matlab software with acceptable
R-square index value. Type of fitting equation is not im-
portant than R-square index, so we select equation that
have R-square value near 1. Because of nature LMF that
must be without specific unit and has per unit structure
and also for comparison of each days load profile with
base load profile, it is necessary to find out base load pro-
file among m load profiles. The simple method for finding
base load profile is finding average load profile, but in
this paper with using of curve fitting method, the best one
is selected. Base load profile curve equation that is ob-
tained from curve fitting methods is shown in 9.
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Ppase(t) = A4t™ + Apt™ ™1 + oo+ At )

With dividing all days load profile curve equation to
base load profile curve equation, LMF of each days that
caused by only temperature changes will be obtained as
are shown in 10. These equations are per unit and without
specific unit. In this step there are m number LMF that
differences between them are because of temperature vari-
ation. There are some methods to find out specific LMF
that all equations of m day's LMF converge that, but in
this paper artificial neural network analysis is selected.
Furthermore with using of this method relation between
temperature variation and load profile curve will be con-
sidered.

P (t -
A0 =gt" +e,t" -+ et
Pbase(t)

Py (1) n -
——— =0t + 5t +--+C 1
Pbtm'e (t) é,l é,z é’"
Pi(1) . a1 (10)
———=nt +tnt  +---+nt
Pbase (t) 7]1 772 77"
£@ _ Ot" +0,t"" +---+ 0t
Pbase (t)

Training artificial neural network with temperature
data as input vector and 24 hours LMF for typical days as
target or output vector will be done. With having a set of
input valid data for trained network a set of LMF will be
achieved. With applying curve fitting on output data the
final LMF will be fined. It is necessary to consider other
parameter beside temperature information as an input vec-
tor for training network and it is load growth for relative
days. It is absolutely obvious that load profile variation in
two similar days depends on load growth so we consider
input vector with four dimensions.

According to recent description input vector for neural
network training is like matrix A is shown at (11). Each
row is relative day's temperature information and load
growth index. Columns 1 to 4 are minimum, average,
maximum and load growth index for respective day. Tar-
get vector for neural network training is like matrix B that
is shown at (12). In this matrix each row shows 24 load
amounts at 24 hour on relative day that are divided to
Pbase(t). Matrix A and B order depends on the number of
days that we have same condition except temperature
variation.

¢

min, tavgl tmaxl g
A _ tminz tavgz tmax2 2

Loin Love T /

| “min,, “avg, “max, g,

RO

Pba.s'e (t)
B=|
£,

})baxe (t)

(11)

In matrix A, tminl is minimum temperature on first
day, tavgl is average temperature on first day, tmax1 is
maximum temperature on first day and finally Lgl is load
growth on first day. m is the number of days that have
same condition except temperature variation. After train-
ing neural network we have pattern that enables having
24 hours LMF with having temperature information and
load growth. With having this pattern, 24 hours LMF
index for related medium voltage feeder are obtained and
it was obvious that temperature variation when and how
much could change load side consumption.

4. Practical Study

We collect all 20Kv feeders' energy consumption of Al-
borz Province Power Electric Distribution Company for
4 years. Also temperature information of 4 years has been
collected. All our study is based on collected information.
This company has 309 medium voltage feeders that smart
meters recorded energy consumption in 1 hour step. Due
to importance and effectiveness of residential loads, we
concentrate this type of load behavior. Feeders that feed
the large number of residential type of loads are selected
for our study. In order to ignore residential load behavior
caused by knowledge level of costumers, and social wel-
fare, feeders that feed the part of city with the same
knowledge level and social welfare with the average level
have been noticed. Also feeders that 90% of connected
loads are residential are used for our study. Feeders don't
have any load displacement are considered for our study.
Fig. 2 shows load profile curve of typical residential
feeder for typical day.
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24-hour Load:Profile

Active Power (WMW)

Time (hour)

Fig. 2. Load profile curve of typical residential feeder for typi-
cal day
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Fig. 3. 24 hours load profile on 70 days

There was m=70 days in 4 year that other parameters
variation was the same except temperature variation. Fig.
3 shows 24 hours load profile on 70 days. So the load pro-
file curve of these days was extracted and with using of
curve fitting related equation of mentioned curves was
calculated as are shown in 12. Fig. 4 shows sample curve
fitting for 4 typical days.

P (t) = (1.61e=9)t" —(1.75e = 7)t* +...— (1.63e — 4)t +1.26

with R — square = 0.9955

P,(t) = (1.08e —9)t° — (1.11e = 7)t* +... - (0.30e — 4)t +1.51

with R — square = 0.9907

P,(1) = (1.84e—9)t° — (2.02e = 7)t* +...— (0.25e —4)t +1.23  (12)
with R — square = 0.9898

P, (1) =(3.98¢-9)t" —(4.87e-T)t" +..—(0.72e — 4)t + 2.37
with R — square = 0.9943

R

=11
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Fig. 4. sample curve fitting for 4 typical days

Active Power (WYWW)

Time (hour)

Fig. 5. Curve fitting on 70 days data

With applying curve fitting on 70 days data that was
shown in Fig 3, base load profile that is mentioned in 9
will be obtained. This equation is considered as base load
profile to do comparison each days load profile curve with
this and make LMF index without any unit as per unit
index. Fig. 5 shows this curve fitting and 13 shows related
equation with acceptable R-square index near 0.6048.

P, (1) =(1.65¢-9)° —(1.83e—7)t* +(8.52e - 4)t’
~(2.le-4)t* +(3.2e-3)t’ - (2.9e - 2)¢t*
+(1.6e—1)t* —0.49¢> +0.52¢' +1.2 (13)

with R — square = 0.6048

With dividing all equations in 12 to Pbase(t) hour by
hour value, per unit LMF for each day will be obtained as
shown in 14. These equations represent power consump-
tion variation between each day in comparison with
Pbase(t) due to temperature variation. Fig. 6 shows some
example of mentioned equation in 14.

P (1) =—(9.99¢-8)t° +(3.07e-6)t* +..— (0.2)t +1.04
Prase (1)
with R — square = 0.8726
P _ (7.61e=9)t* —(7.42e~T)t" +...— (0.51)¢ +1.21
Piyse (1)
with R — square =0.8103 14
P}(t) 9 8 ( )
Pi(t):(7.04e710)t —(7.07e—-8)t" +...—(0.2515)¢ +1.08
base

with R — square =0.704

Pu(n) _

~(1.44¢—8)t7 +(1.21e— 6)t° +...— (0.088 )¢ +1.39
P (1)

In this step with temperature value as input vector and
equations on 14 as output vector, the artificial neural net-
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Fig. 6. Sample LMF for 4 typical days

work will be trained. The aim of this section is making re-
lation between temperature changes and related load pro-
file curve and finding final curve with a large number of
valid temperature data as a series of inputs. Final curve
could be obtained from curve fitting of neural network
outputs as shown in fig 7 and related Gaussian equation
as are shown in 15.

871

8.87
LMF(p.u) =-0.44e {54) +0.395¢ {56w)

(15)

£-21.96 t+1.21x10*

roasse (50 +8.62e{ ) x10"

The value of dividing area under the final LMFcurve
to area of maximum value of this curve that happened in
hour 11 is 0.95. This value could be considered as total
load manageability factor affected by temperature varia-
tion on this typical residential medium voltage feeder. If
this value was equal to 1 then it showed temperature vari-
ation could not affected on load consumption more in-
tensely. Because all curves in fig7 were obtained from
dividing specific day load profile to base load profile, then
value 1 means despite temperature variation, consumption
of energy was the same amount in two curves in specific
time. If this value is greater or smaller than 1, it shows
temperature variation positive or negative intense affec-
tivity on load consumption. Also hour by hour analysis of
final curves shows that before the hour 10 temperature
variations were in a manner that caused load consumption
decreases and after that it caused increases of load con-
sumption and need to support by other feeders.

Conclusion

In this article we concentrate on residential load to find
load reaction in the medium voltage feeder due to tem-
perature variation to get the LMF. Final LMF curve shows

Hour by Hour Load Manageability Factor
16 " . .

*

14 PR RN T A LA

12

LWIF (p.u.)

0s

5 10 15 20
Time (hour)

Fig. 7. Final LMF

that temperature variation could decrease load consump-
tion in specific times during the day and also increase that
in another times. Collecting other parameters effective on
load profile to finding final LMF will be done. With ob-
taining other parameters LMF it can be easy to find that
which parameters must be manage and control to get op-
timum load managing.
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